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Abstract-A three-dimensional, numerical analysis of natural convection in a closed, toroidal loop has been 
performed. The results show that the flow is strongly three-dimensional, and that streamwise flow reversal 
and cross-stream secondary motion exist; similar flow phenomena have been experimentally observed. The 
strengths of the flow reversals and secondary motion are shown to increase with increasing Grashof number. 
The impact which these three-dimensional effects have on the friction factor, the Nusselt number, the 

buoyancy force, and the average axial velocity, are discussed. 

INTRODUCTION 

THIS PAPER concerns the steady-state, natural 
convection flow through a toroidal loop oriented in a 
vertical plane (see Fig. 1). When the loop is heated 
from below and cooled from above a density gradient 
is created in the fluid, and fluid motion results. If the 
loop is tilted through the angle c(, as shown in the 
figure, the flow is in the counterclockwise direction. 

This system is a simple example of a class of devices 
known as thermosyphons or natural circulation loops, 
which have applications in solar hot water heaters, 
emergency cooling of nuclear reactor cores, 

geothermal power production, computer cooling, 
etc. [l-7]. 

Two early analyses of natural circulation loops were 
performed by Welander [8] and by Keller [9]. Both 
were simplified, one-dimensional models which 
yielded steady-state and oscillatory solutions. 

The thermosyphon configuration which is the 
subject of this study has been investigated previously. 
Creveling et al. [lo] reported findings of an 
experimental investigation of this toroidal thermo- 
syphon configuration with zero tilt angle (i.e. c( = 0 in 
Fig. 1). They found that a steady-state flow existed 
only for the high and low heat input ranges in their 
experiments. In the intermediate heat input range, the 
flow was unstable. Under steady-state conditions, they 
observed a region of flow reversal near the entrance to 
the cooling section. Creveling et al. also performed a 
steady-state, one-dimensional (Q-variation only) 
analysis of the fluid velocity and temperature. 
Damerell and Schoenhals [ 1 l] continued this work by 
investigating, both experimentally and analytically, 
the effect of tilting the thermosyphon about its 
horizontal axis (a # 0 in Fig. 1). They found 
experimentally that the flow was always stable for a tilt 
angle greater than 6”. 

Ramos et al. [ 121 addressed the effect of a variable 
cross-sectional area. The one-dimensional analysis 
was extended to the transient case in refs. [13,14]. 
Mertol et al. [ 15, 161 performed a two-dimensional (r 

and 0) numerical analysis of the toroidal 
thermosyphon. Stem and Greif [17] undertook 
further experimental investigation of the same 
thermosyphon conliguration. Three-dimensional 
effects were once again observed, such as flow reversal, 
nonzero cross-stream velocities, and nonaxisymmetric 
temperature profiles. 

To summarize, experiments on the toroidal 
thermosyphon have shown that under stable flow 
conditions the flow is strongly three-dimensional, and 
regions of streamwise flow reversal exist. The one- and 
two-dimensional analyses performed to date have all 
assumed that the flow is solely in the axial direction 
and that the effect of pipe curvature is negligible. 
Because of these simplifications, these analyses have 
not been able to predict any of the three-dimensional 
flow phenomena. A three-dimensional analysis of this 

FIG. 1. The toroidal thermosyphon. 
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Greek symbols 
a tilt angle, or thermal diffusivity 

B coefficient of thermal expansion 

AT characteristic bulk temperature 
difference, Q Jritc 

e axial coordinate 

p dynamic viscosity 

V kinematic viscosity, &X 

0, density evaluated at T, _ 
1 -*n aw 

7, wall shear stress, - 
s I 7% d4 2x0 1 

@ nondimensional temperature, 
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% nondimensional bulk temperature, 
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@ nondimensional average temperature, 

1 2n 1 

_ 

ss 
@r dr d$ 

=o 0 

@W nondimensional wall temperature, 

(T, - T,)/AT 
4 circumferential coordinate. 

flow has been carried out by Lavine [18]. Results coordinate system shown in Fig. 2, are as follows (with 

showing the effect of tilt angle have been reported by symbols defined in the Nomenclature): 

Lavine et al. [ 193. 
Continuity 

THEORETICAL BACKGROUND i g [r(R + r cos $)u] 

A three-dimensional, numerical analysis of the flow 
and heat transfer in the toroidal thermosyphon has 
been performed. The flow is assumed to be steady- 

+~$[(R+rcos+)v]+~=O. (1) 

state, laminar and incompressible, and viscous r-momentum 
dissipation is neglected. Physical properties are 
assumed to be constant, except that the Boussinesq 
approximation is used for the density. Given these 

(“.o)u-f-R;~~~s4 w* 

assumptions, the nondimensional differential 4 

equations which govern the flow, expressed in the 
= -$+$@sinRcosd 
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pipe cross-section 

FIG. 2. The toroidal coordinate system 
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RWde=PrGr a (9) 

In the one-dimensional analyses, the momentum 
equation is integrated around the loop from 0 = 0 to 
21~ so that the inertia and pressure gradient terms are 
eliminated. Thus, in the one-dimensional analyses the 
momentum equation reduces to an overall balance 
between buoyancy and friction. It is then assumed that 
CD, calculated from the energy equation is equal to @ 

(4) 
needed in the momentum equation. This will be shown 
to be substantially in error in this paper. 

To evaluate 7w and qw, the wall shear stress 

(5) 
throughout the loop and the heat transfer coefficient in 
the cooling section must be specified in the one- 

. 
Energy 

(2) 
negligible. 

The various one-dimensional analyses can be 
derived by integrating the three-dimensional axial 
momentum and energy equations over the pipe cross- 
section and then neglecting terms in the integrated 
equations. If it is assumed that the velocity is solely in 
the axial direction, and that pipe curvature and axial 
conduction are negligible, the integrated equations 
then reduce to [18] : 

&momentum 
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where 

(6) 

v2 = 

i aa 

+R+rcos4% ‘3 ( >I ’ (7) 

The boundary conditions are: (1) zero velocity at the 
wall; (2) specified wall temperature in the cooling 
section; (3) specified wall heat flux in the heating 
section; (4) finite velocities and temperature at the pipe 
centerline; (5) symmetry about the plane $ = 0, x; and 
(6) 2n-periodicity in the 0 direction. The solution to 
these equations depends on the four parameters Gr, 
Pr, R and u. Both the buoyancy and viscous terms are 
multiplied by l/Gr. This does not mean that buoyancy 
becomes less important as the Grashof number 
increases. Rather, since the characteristic velocity was 
derived based on a balance between buoyancy and 
friction, the nondimensional equations reflect this 
balance. 

In the two-dimensional analysis of Mertol et al. 
[15], it was assumed that there is axial symmetry (i.e. 
no 4 dependence), the velocity is solely in the axial 
direction, and pipe curvature and axial conduction are 
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dimensional analyses. (The value of 4, in the heating 
section is a specified boundary condition.) 

NUMERICAL SOLUTION 

The differential equations (lt_(5) were solved using 

a finite-difference computer program. The computer 
program is a version of the TEACH code 1201, a finite- 
difference program for solving the continuity, 
momentum and energy equations in their complete 
elliptic form. The concepts underlying this computer 
program are discussed by Patankar [21], and a 
version for curved pipes is described by Humphrey 
[22]. This computer program was modified for the 
toroidal thermosyphon flow by Lavine [ 183, and was 
validated on several flows for which experimental data 
or analytical solutions are available. 

For the solution procedure used in this research, 
‘convergence’ can have two meanings. For a particular 
finite-difference grid, the sequence of iterations must 

be continued until they converge to a reasonably 
accurate solution of the finite-difference eq,uations. 

And, as the finite-difference grid is refined, the 
sequence of solutions must converge to a reasonably 
grid-independent result. When both of these criteria 
are met, the numerical solution will be a good 
approximation to a solution of the differential 
equations. Both of these criteria were met for the 
thermosyphon cases reported here [IS], using a 
39 x 26 x 100 grid (in the r, g5 and f3 directions, 
respectively). The radial grid was nonuniform, with 13 
of the 39 grids within a distance from the wall of 15 % 
of the radius. The 4 grid was uniform. The axial (0) 
grid was nonuniform, with 8 of the 100 grids located in 

the first 10” of the cooling section, and another 8 in the 
first 10” of the heating section. 

RESULTS 

The solution for the flow depends on the four 

parameters Gr, Pr, R and a. The cases which are 
investigated in this study correspond to the geometry 
of the toroidal thermosyphons at Purdue University 
and at the University of California, Berkeley, i.e. 
R = 24.6. The Prandtl number is a typical value for 
water, Pr = 6.5. Unfortunately, it was not possible to 
obtain converged results for values of the Grashof 
number corresponding to the experimental data, 
which were on the order of 104. Cases are presented 
here for two lower Grashof numbers, Gr = 1900 and 
3600, and a tilt angle of 10” (to ensure the existence of a 
steady-state flow). For R = 24.6, the values of Gr 
correspond to Gz = 8 and 15 in the two-dimensional 
analysis of Mertol et ul. [ 151. 

For the cases discussed here, the main flow is in the 
counterclockwise direction. However, regions of flow 
reversal do exist. Secondary motion (i.e. motion 
perpendicular to the axial or 0 direction) was also 
predicted by the numerical analysis. 

The results for the two different Grashof numbers 

are similar, and results for the higher Grashof number 
will only be shown when necessary to demonstrate a 
significant difference between the two cases. A larger 
Grashof number corresponds to steeper gradients of 
velocity and temperature, and also results in a 
stronger coupling between the temperature and 

velocity fields, which causes stronger flow reversals 
and secondary motion. The larger gradients at the wall 
and the higher secondary velocities yield greater wall 
friction and heat transfer. From the definitions of Gr 
and the characteristic Reynolds number (see 
Nomenclature), Gr is seen to be proportional to Re,,. 

Temperature and velocity profiles 
For discussion purposes, the thermosyphon will be 

divided into four regions: the entrance to the cooling 

section, 0 z l&20”, the remainder of the cooling 
section, 0 E 20-190”, the entrance to the heating 

section, 0 z 19(r200”, and the remainder of the 
heating section, 0 z 20&370”. 

Figures 3 and 4 show the dimensionless 
temperatures and axial velocity profiles in the 

symmetry plane, near the entrance to the cooling 
section, for Gr = 1900. The left- and right-hand sides 
of the graph correspond to the inner and outer pipe 
halves, respectively (see Fig. 2). Before the flow enters 
the cooling section (0 = 9.8”) the temperature peak is 
at the inner wall (Fig. 3). This is because in the bottom 
half of the loop the hotter, lighter fluid rises toward the 
inner wall. The fluid enters the cooling section and the 
temperature at the wall drops to the specified wall 
temperature (see 0 = 10.3“). A steep temperature 
gradient exists near the wall, and the temperature in 
the core decreases as the flow proceeds downstream. 

It is noted that the temperature peak shifts toward 
the outer wall since, as the pipe becomes more 
inclined, the hotter fluid tends to rise toward the outer 
wall, while the cold fluid in the neighborhood of the 

wall falls toward the inner wall. This creates a 

INNER r ourm 

FIG. 3. Temperature profiles in symmetry plane, near 
cooling section entrance, Gr = 1900. 
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1 
INNER r 01 a 

FIG. 4. Axial velocity proliles in symmetry plane, near 
cooling section entrance, Gr = 1900. 

secondary motion, which becomes stronger as the flow 
proceeds downstream (see Fig. 5; the velocity vectors 
are shown at selected grid points to avoid cluttering 

the figure). The secondary velocity, ,/‘m, is as 
large as 50% of the average axial velocity at some 
points in the flow. 

Next, consider the axial velocity profiles, Fig. 4. 
Before the flow enters the cooling section (6 = 9.4”), 
the velocity peak is toward the inner wall, since the 
hotter fluid there rises more quickly than the cooler 
fluid at the outer wall. Once inside the cooling section 
(0 > lOa), the flow begins to decelerate near the walls, 
due to the rapid cooling there. The cross-stream 
secondary motion brings the cold, slowly moving fluid 
in the neighborhood of the wall toward the inner wall 
(see Fig. 5). A flow reversal results at the inner wall, 
and the axial velocity peak shifts toward the outer 
wall. The temperature is considerably lower in the 
region of flow reversal than in the remainder of the 
cross-section (see Fig. 3). 

For the higher Grashof number, Gr = 3600, the 
axial flow reversal begins earlier, becomes stronger 
and lasts longer, due to the increased importance of 
buoyancy. This stronger flow reversal forces the axial 
velocity peak to be closer to the outer wall. 

The flow in the remainder of the eooiing section is 

I.0 9.6 8.8 8.5 1.0 
INNER r OUTER 

b32.8’ 

FIG. 6. Temperature profiles in symmetry plane, remainder 
of cooling section, Gr = 1900. 

illustrated in Figs. 6 and 7 for GP = 1900. The 
temperature decreases as the tlow proceeds through 
the cooling section (Fig. 6). The temperature peak 
remains near the outer wall due to buoyancy effects. 
Next consider the axial velocity (Fig. 7). As the flow 
approaches the top of the loop (B = 90”), the 
component of the gravitational force in the axial 
direction goes to zero, so that there is no longer any 
reason for the cooler fluid to reverse its axial direction. 
Thus, the region of flow reversal gradually vanishes, 
and accordingly the magnitude of the axial velocity 
peak diminishes. After the flow passes the top of the 
loop, gravity causes the cooler fluid near the inner wall 
to fall more rapidly than the warmer fluid near the 
outer wall. Thus the velocity peak shifts toward the 
inner wall. This effect is small because the temperature 
variation across the cross-section is relatively small 
toward the end of the cooling section. For the higher 
Grashof number, the axial velocity peak moves 
somewhat closer to the inner wall due to a larger 
temperature variation and to the increased 
importance of buoyancy. 

The general features of the flow in the heating 
section are similar to those in the cooling section; in 
the heating section the hotter fluid rises toward the 
inner wall, which results in a flow reversal near the 

8.2 w - 

INNER OUTER INNER 
8 = 9.8” 

OUTER 
0 = 21.3’ 

Fro. 5. Secondary velocity vectors near cooling section entrance, Gr = 1900. 
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1.B la.5 0.0 0.6 

INNER r oxi? 

FIG. 7. Axial velocity profiles in symmetry plane, remainder 
of cooling section, Gr = 1900. 

beginning of the heating section. However, there are 
differences in the details of the flow in the two sections, 
due to the fact that the constant wall heat flux 
condition permits greater thermal stratification. To 
illustrate this, consider that at the top of the cooling 
section, the colder fluid falls toward the inner wall and 
the hotter fluid rises toward the outer wall. However, 
the fluid can never become hottest at the top, because 
the wall itself must be cold at the top. In contrast, at 
the bottom of the heating section, the colder fluid falls 
toward the outer wall and the hotter fluid rises toward 
the inner wall. Here the fluid may become strongly 
stratified, with the wall considerably hotter at the top 
(inner wall) than at the bottom (outer wall). The effects 
of this greater thermal stratification are discussed 
shortly. 

Figures 8 and 9 are temperature and axial velocity 
profiles in the symmetry plane near the beginning of 
the heating section, for Gr = 1900. Note that the right 

INNER r OUTER 

FIG. 8. Temperature profiles in symmetry plane, near 
heating section entrance, Gr = 1900. 

1.0 8.5 0.0 El.5 

INNER r OUTER 

FIG. 9. Axial velocity profiles in symmetry plane, near 
heating section entrance, Gr = 1900. 

sides of these (and all other) plots still correspond to 
the outer wall even though, if the thermosyphon is 
viewed as in Fig. 1, the outer wall is now to the left. The 
curves 0 = 189.0” and 189.8” in Fig. 8 correspond to 
locations shortly upstream of the entrance to the 
heating section. The temperature curve for 0 = 189.0” 
looks similar to the profile at 0 = 181.5” in Fig. 6. 
However, at f3 = 189.8”, the temperature has risen 
significantly near the inner wall, even though the flow 
is still in the cooling section. This temperature increase 
is due to a region of axial flow reversal which causes 
fluid from the heating section to flow back into the 
cooling section. In the velocity profiles, Fig. 9, it is 
difficult to discern the small flow reversal at 
8 = 189.4”, but at 0 = 190.0” (exactly at the entrance 
to the heating section) it is quite apparent, and it 
becomes stronger as the flow proceeds. The speed of 
the reversed flow is greater in the heating section than 
in the cooling section (cf. Fig. 4). This is due to the 
greater thermal stratification in the heating section 
(see Fig. 8 whiq_h shows that the temperature is 
considerably hotter at the inner wall than at the outer 
wall), which causes a larger velocity variation over the 
cross-section (due to the effect of buoyancy). Thus, the 
flow reversal is stronger in the heating section and is 
able to penetrate into the cooling section. 

The results for the higher Grashof number case near 
the entrance to the heating section are illustrated in 
Figs. 10 and 11 (cf. Figs. 8 and 9). It is seen that the 
flow reversal near the inner wall and the 
corresponding temperature peak start sooner and are 
more pronounced, due to the increased importance of 
buoyancy. In Fig. 11 the flow reversal does not begin 
at the inner wall, but rather a short distance away from 
the wall. Immediately adjacent to the wall the fluid 
continues to flow downward until it enters the heating 
section (0 = 190.0”). The reason for this is that in the 
cooling section the region very close to the wall is quite 
cold. Since buoyancy (or gravity) is more important 



A three-dimensional analysis of natural convection in a toroidal loop 257 
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FIG. 10. Temperature profiles in symmetry plane, near 
heating section entrance, Gr = 3600. 

for this case, this cold fluid has a stronger tendency to 
fall downward (in the main flow direction). 

Next consider the secondary motion in the heating 
section. Throughout most of the heating section the 

hot fluid near the wall rises toward the inner wall, and 
the colder fluid falls toward the outer wall. Thus the 
secondary motion has the same pattern as in the 
cooling section-inward near the wall and outward 
near the symmetry plane. However, this characteristic 
secondary motion is weaker in the heating section 
because of the greater thermal stratification; that is, 
the fluid is more stably stratified (i.e. hotter near the 
top), and the driving force for the secondary motion is 
therefore weaker. There is another difference between 
the secondary motions in the two sections. Very near 
the entrance to the heating section there is a strong 
secondary motion which brings fluid from near the 
inner wall toward the outer wall over the entire pipe 

INNER r OUTER 

FIG. 11. Axial velocity profiles in symmetry plane, near 
heating section entrance, Gr = 3600. 

INNER OUTER 
Q = lQQ.3’ 

FIG. 12. Secondary velocity vectors near heating section 
entrance, Gr = 1900. 

cross-section (see Fig. 12). This motion begins 

somewhat upstream of the flow reversal. The fluid 
moving in the main flow direction must move around 

the flow reversal, toward the outer wall. This effect is 
also present near the entrance to the cooling section, 
but is not as strong, because the flow reversal is weaker 
there, and because (as just explained) the driving force 
for the more characteristic secondary motion is 
stronger. 

The temperature increases as the flow proceeds 
through the heating section (not shown). The 

temperature peak remains at the inner wall due to 
buoyancy effects. As the flow approaches the bottom 
of the loop the flow reversal vanishes and the axial 
velocity peak diminishes (not shown), similar to the 

behavior near the top of the cooling section. After the 
flow passes the bottom of the loop, buoyancy causes 

the warmer fluid near the inner wall to rise more 
quickly than the cooler fluid near the outer wall and 
the velocity peak therefore moves toward the inner 
wall. This effect is more pronounced in the heating 

section, because the temperature variation across a 
cross-section is greater for a constant wall heat flux 
boundary condition than for a constant wall 
temperature boundary condition. 

For the higher Grashof number, the velocity peak 
moves slightly closer to the inner wall than it did for 

the lower Gr case, due to the larger temperature 
variation and to the increased importance of 

buoyancy. 

Friction factors and Nusselt numbers 
The results for the local value of f‘Re for the lower 

Grashof number case are shown in Fig. 13 as a 
function of 4 for different values of 0. The coordinate 4 
varies from 180” to 0” so that the left- and right-hand 
sides of the graph correspond to the inner and outer 
walls, as before. In the flow reversal regions fRe is 
negative, since the velocity is in the opposite direction 

from the main flow (observe near the inner wall for 
0 = 3 1.1” and 2 11.1”). The friction increases near the 
outer wall at these locations, since the axial velocity 
peak shifts toward the outer wall. 

Figure 14 shows the peripherally averaged fRe (see 
Nomenclature). It is typically higher than for fully 
developed laminar flow in a straight pipe (i.e. 16) and 
is generally somewhat greater for the higher Gr case, as 
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13. Variation of fRe around tube periphery 

Y I I I 

00 270 360 

FIG. 14. Peripherally averaged ,fRe as a function of 0. 

expected. The variation of fRe with B is quite 
complicated. In portions of the flow reversal regions 

fRe drops significantly due to the ‘negative’ friction at 
the inner wall. However, the flow reversals also shift 
the axial velocity peak toward the outer wall, causing 
increased friction there. For the higher Gr case, this 

effect dominates at approximately Q = 30” and 190”, 
causing large peaks at these two locations. A 

comparison ofFigs. 9 and 11 at 0 = 190” confirms that 
the axial velocity gradient at the outer wall is 
significantly greater for the higher Gr case. 
Apparently, flow reversals may either decrease or 

increase the value of fRe at a particular cross- 
sectional location, depending on the local details of the 
flow. The value of fRe when averaged over the entire 
loop (i.e. in both the peripheral and axial directions) is 
16.8 for Gr = 1900, and 19.5 for Gr = 3600. 

In Fig. 15, the local Nusselt number is seen to vary 
strongly around the tube periphery. The peripherally 

1 

180 0 
INNER OUTER 

FIG. 15. Variation of Nu around tube periphery. 

averaged Nusselt number, Nu (see Nomenclature), is 
shown in Fig. 16. At the entrances to both the cooling 
and heating sections, the Nusselt number drops 
sharply in a manner that is characteristic of the 
development of a thermal boundary layer. However, 
the Nusselt number does not continue to decrease 
monotonically as had been predicted by the two- 
dimensional analysis of Mertol et al. [ 151, indicating 
that three-dimensional effects are indeed important. 

Nu is generally higher for the higher Gr case, as 
anticipated. 

Average velocities and temperatures 
The average dimensionless axial velocities are 0.824 

and 0.678 for the lower and higher Grashof numbers, 
respectively. (Note, however, that this does not 
necessarily mean that the dimensiona/ velocity is lower 
for the higher Grashof number.) The dimensionless 
bulk temperature, @,,, is shown in Fig. 17. An energy 

- - PR-3600 
/\ 

/ 

?I 
I I I 

90 188 278 
6 C&g.> 

FIG. 16. Peripherally averaged Nu as a function of 0. 
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FIG. 17. Bulk temperature as a function of 8. 

balance on the heating section requires that 
Q,(c()-C+,(~+CI) = l/W. It can be confirmed that the 

temperature differences shown on the graph are indeed 
inversely proportional to the average velocities given 

above. The rate of decrease of the bulk temperature in 
the cooling section is greatest at the entrance and then 
decays, consistent with constant wall temperature 
cooling. Since the flow at the higher Grashof number 
develops more slowly, the bulk temperature of the 
fluid in the cooling section approaches the cold wall 
temperature more slowly than for the lower Grashof 
number case. The increase of the bulk temperature in 
the heating section is essentially linear throughout 
most of the heating section. This is a consequence of 

the constant wall heat flux boundary condition, 
provided that axial conduction is negligible. Note, 
however, that at the entrance to the heating section the 
temperature increase is not linear; it increases and 
then actually decreases. Since the axial velocity varies 
from positive to negative over the cross-section, there 
is a region where the axial velocity is small, and hence 
axial conduction is locally significant compared to 
axial convection. This may give rise to the nonlinear 
bulk temperature profile. 

The cross-sectionally averaged buoyancy force 
(discussed below) is proportional to the cross- 
sectionally averaged temperature, (D. The bulk 
temperature, Qb, is a velocity-weighted average. These 
two types of average temperature are compared in 
Figs. 18 and 19 for the two cases. Near the entrance to 
the cooling section, high temperature regions 
correspond to high velocity regions, so the velocity 
weighted bulk temperature is greater than the average 
temperature. Near the entrance to the heating section, 
high temperature regions correspond to low (or even 
negative) velocity regions, so the velocity weighted 
bulk temperature is lower than the average 
temperature. The deviation of the average 
temperature from the bulk temperature is much 
greater for the higher Gr case. This is a consequence of 

0 

FIG. 18. Bulk and average temperatures, Gr = 1900 

the greater variation in the velocity and temperature 
profiles over a cross-section. 

A discussion of the average axial velocity 
The axial momentum equation, when averaged over 

the entire volume of the thermosyphon, reduces (to a 

very close approximation [18]) to a balance between 
the ‘total buoyancy’ and ‘total wall friction’. It can 
then be shown [18] that: 

K 2n 

40 s_ 
@cosBd@ 

&$= 
total buoyancy (10) 

1 

-1 

2n fRe = total wall friction ’ 

2n 0 XdQ 

(This can also be derived by integrating equation (8) 
from 0 = 0 to 27~) Table 1 lists the quantities 

(n/4) si” @ cos 0 d0, (1/2n) sp (fRe/l6) d0 and W for 
the one-, two- and three-dimensional analyses, for the 
two cases considered here. The two-dimensional 

_.- 

0. Be 
I I I 

80 188 278 ! ia 
8 <deg.> 

FIG. 19. Bulk and average temperatures, Gr = 3600. 
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Table 1. Comparison of one-, two- and three-dimensional analyses 

3-D 2-D 1-D 

Gr 1!900 3600 1!900 3600 I!400 3600 
1 2x 

- s 
__ 
(fRe/16)dO 1.05 1.22 1.05 1.21 1.00 

2n 
1.00 

0 
n Zn 
40 s @cos Bd0 0.87 0.83 0.97 1.08 1.00 1.00 

w 0.82 0.68 0.92 0.89 1.00 1.00 
% error in W relative to three-dimensional results ~ 12% 31% 21% 47% 

results are from Mertol et al. [ 151, for the case of zero 
tilt angle. The one-dimensional results are derived 
using the analysis of Greif et al. [13], with the 
inclusion of a variable tilt angle. For the one- 

dimensional analysis, it is assumed that f Re = 16 and 
Nu = 3.658 in the cooling section. 

First let us consider the three-dimensional results. 
As described previously, the friction is greater for the 
higher Grashof number case. In addition, the total 
buoyancy is less for the higher Grashof number than 
for the lower Grashof number. This is due to the 
stronger flow reversals for the higher Grashof number, 
which cause the average temperature to decrease more 
quickly near the cooling section entrance (where the 
flow is rising) and increase more quickly near the 
heating section entrance (where the flow is falling) (cf. 
Figs. 18 and 19). Both of these temperature effects act 
to retard the flow, or decrease the total buoyancy. The 
combined effects of higher friction and lower 
buoyancy cause the average axial velocity to be lower 
for the higher Grashof number case. 

The one-dimensional analysis assumed a value of 16 

for fRe, which in general is low. The one-dimensional 
analysis also overpredicts the total buoyancy, due, in 
part, to the incorrect assumption that the bulk 
temperature is equal to the average temperature. The 
three-dimensional analysis shows that, as compared to 
the bulk temperature, the average temperature drops 
more rapidly near the cooling section entrance and 
rises more quickly near the heating section entrance. 
As explained earlier, this tends to reduce the total 
buoyancy. Thus, the one-dimensional analysis, which 
neglects this effect, overpredicts the total buoyancy for 
these cases. 

The two-dimensional analysis yields an excellent 
estimate of the total frictional force for the two cases 
given (assuming that the results for a = 0” would be 
approximately the same as for a = 10”). The predicted 
total buoyancy, however, is significantly in error. This 
is due to the neglect of three-dimensional effects and 
the consequent inability to predict the flow reversals. 
In the absence of flow reversal, the bulk and average 
temperatures would probably differ much less. Thus, 
while the two-dimensional analysis does not make the 
assumption that the bulk and average temperatures 
are equal, the result is much the same as if it did. 
Therefore, as in the one-dimensional analysis, the two- 

dimensional analysis overpredicts the total buoyancy 
for the two cases. 

Since both the one- and two-dimensional analyses 
overpredict the total buoyancy (and the one- 
dimensional analysis also underpredicts the friction), 
both analyses overpredict the average axial velocity. 

CONCLUSIONS 

Detailed numerical results for the flow in the 
thermosyphon are presented for two different Grashof 
numbers. The calculated results for these Grashof 
numbers do exhibit the flow phenomena which have 
been experimentally observed at higher Grashof 
numbers, such as axial flow reversal and cross-stream 
secondary motion. 

The details of the flow, in particular the flow 
reversals and the secondary motion, depend on the 
Grashof number and on the thermal boundary 
condition (i.e. constant wall temperature or constant 
wall heat flux). The strength of the secondary motion 
and of the flow reversals is greater for the higher 
Grashof number case. 

The calculated velocities and temperatures vary in 
all three dimensions, and the derived quantities 
fRe(+,0) and Nu(4,0) are strongly dependent on 
both C#J and 0. The peripherally averaged quantities 

fRe and Nu are generally greater than for fully 
developed laminar flow in a straight pipe, except that 

fRe decreases strongly in the flow reversal regions. 
Both of these quantities are higher for the higher 
Grashof number case. 

The cross-sectionally averaged (non-velocity- 
weighted) temperature may differ significantly from 
the bulk temperature. This is especially true in regions 
of strong flow reversal, since the axial velocity takes on 
extreme positive and negative values. The difference 
between the average and bulk temperatures is more 
pronounced for the higher Grashof number case, 
corresponding to the stronger flow reversals for this 
condition. 

The total buoyancy decreases with increasing 
Grashof number. This is due to the stronger flow 
reversals at the higher Grashof number, which cause 
the average temperature, @, to decrease more strongly 
near the cooling section entrance, and increase more 
strongly near the heating section entrance. 
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The nondimensional average axial velocity is 
proportional to the ratio of the total buoyancy to the 
total friction, and is therefore lower for the higher Gr 

case, corresponding to lower total buoyancy and 
higher total friction. 

The one- and two-dimensional analyses overpredict 
the total buoyancy, and consequently overpredict the 
average velocity. 
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ANALYSE TRIDIMENSIONNELLE DE LA CONVECTION NATURELLE DANS UNE 
BOUCLE TOROIDALE-EFFET DU NOMBRE DE GRASHOF 

R&utmLOn conduit une analyse numtrique tridimensionnelle de la convection naturelle dans une boucle 
fermie toro’idale. Les resultats montrent que l’ecoulement est fortement tridimensionnel et qu’il existe un 
ecoulement de retour et un icoulement secondaire transversal ; des phtnomtnes d’ecoulements similaires 
ont et& observes experimentalement. Les intensitts des retours et des mouvements transverses augmentent 
avec le nombre de Grashof. On discute de l’impact que ces effets ont sur le frottement, le nombre de 

Nusselt, les forces de volume et la vitesse moyenne axiale. 

EINE DREIDIMENSIONALE ANALYSE DER NATtiRLICHEN KONVEKTION 
IN EINEM TORUS-EINFLUSS DER GRASHOF-ZAHL 

Zusammenfassung-Eine dreidimensionale numerische Analyse der natiirlichen Konvektion in einem Torus 
wurde durchgefiihrt. Die Ergebnisse zeigen, daB die Strijmung einen ausgepragten dreidimensionalen 
Charakter besitzt, und da8 Riickstrijmung und Sekundirbewegung in Form einer Querstromung vor- 
handen sind; Lhnliche Strijmungsphlnomene sind experimentell beobachtet worden. Es zeigt sich, da13 die 
Starke der Riickstriimung und der Sekundlrbewegung mit wachsender Grashof-Zahl zunimmt. Der 
Einflug, welchen diese dreidimensionalen Effekte auf den Reibungsbeiwert, die Nusselt-Zahl, die Auf- 

triebskraft und die mittlere axiale Geschwindigkeit ausiiben, wird erdrtert. 
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AHAJIM3 l-IPOCTPAHCTBEHHOti ECTECTBEHHOn KOHBEKLJMM B TOPOAflAJlbHOM 
KOHTYPE. 3ABMCklMOCTb OT WiCJIA I-PACTOQA 

A""OTal,HS,-&JeflCTaBJIeH WCJICHHbIii aHanH3 TpeXMepHOii CCTeCTBeHHOfi KOHBeKUBB B JBMKHYTOM 

TOpOXUJanbHOM KOHTYPC. k3)'JIbTaTbI IIOKa3bIBaIOT, ST0 IIOTOK IlBJIlIeTCR IIOJIHOCTbKJ TPCXMePHbIM A 

ST0 IiMeeT MeCTO e,-0 peBe!JU,pOBaHHC U BTOpHYHOe TCYCHUC B nOne~',HOM Hi3"paBJIeHHH. TaK&ie 

Te'ieHBII Ha6nKmanHcb B 3KCnCpHMCHTC. nOKa3aH0, YTO IIHTCHCHBHOCTI, 06paTHOrO B BTOPkNHOrO 

TeYeHl,fi B03paCTaEOTC )'BeJIHWHIlCM =lMCJla rpaCrO~a.Pa~MaTpHBaCTCa B,,BIlHBC 3T,,XnpOCTpaHCTBCH- 

HbIX 3+/EKTOB Ha KO3@HUHeHT TPCHHS, 'IMCJIO HyCCCnbTa, IIOn'beMHyKl CUJIY B CPWHEOEO ItO OCIi 

CKOPOCTbTWeHHI. 


